Natural Products

DOI: 10.1002/ange.200702243

Total Synthesis of the Originally Proposed and Revised Structures of Palmerolide A**

K. C. Nicolaou, * Ramakrishna Guduru, Ya-Ping Sun, Biswadip Banerji, and David Y.-K. Chen*

Palmerolide A (Figure 1) is a recently reported polyketide secondary metabolite with an impressive molecular architecture and biological profile.^[1] This marine natural product was isolated from the circumpolar tunicate Synoicum adareanum, which is commonly found in the shallow waters around Anvers Island on the Antarctic Peninsula, and exhibits unusual selectivity against a number of cell lines in the 60 cell panel of the National Cancer Institute (NCI). Specifically, palmerolide A was found to exhibit potent activity against the melanoma cell line UACC-62 (LC₅₀ = 18 nM), only modest cytotoxicity against the colon cancer cell line HCC-2998 (LC₅₀ = 6.5 μm) and the renal cancer cell line RXF 393 $(LC_{50} = 6.5 \mu M)$, and virtually no effect $(LC_{50} > 10 \mu M)$ against other cell lines, thus demonstrating a selectivity index of 10³ among the cell lines tested. Interestingly, palmerolide A displayed an activity profile in the NCI 60 cell line panel that correlated with that of vacuolar ATPase inhibitors.^[2] Palmerolide A was shown to inhibit V-ATPase with an IC₅₀ value of 2 nm and to be active in the NCI's hollow fiber assay. The intriguing biological properties of palmerolide A, along with its relative scarcity, prompted us to undertake its chemical synthesis.

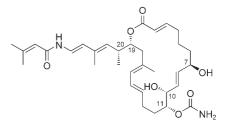
Inspection of the proposed structure of palmerolide A (1a) reveals a 20-membered macrolide, an enamide-containing side chain, 7 olefinic bonds (3 of which are trisubstituted), and a carbamate moiety. Based on detailed NMR spectro-

[*] Prof. Dr. K. C. Nicolaou, [+] Dr. R. Guduru, Dr. Y.-P. Sun, Dr. B. Banerji, Dr. D. Y.-K. Chen Chemical Synthesis Laboratory@Biopolis Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology, and Research (A*STAR) 11 Biopolis Way, The Helios Block, #03-08 Singapore 138667 (Singapore) Fax: (+1) 858-784-2469

E-mail: kcn@scripps.edu

david_chen@ices.a-star.edu.sg

[+] Also at:


Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and

Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093 (USA)

[**] We thank D. Tan (ICES) for assistance with high-resolution mass spectrometry (HRMS). Financial support for this work was provided by A*STAR, Singapore.

Supporting information for this article (including selected data for compounds 23, 25, 1a, 25b, and 1b) is available on the WWW under http://www.angewandte.org or from the author.

1a: originally proposed structure (7R,10R,11R,19R,20R)

1b: revised structure (7S,10S,11S,19R,20R)

Figure 1. Originally proposed (1 a) and revised (1 b) structures of palmerolide A.

scopic analysis, the relative and absolute configuration of this natural product was put forward as that shown in structure 1a (Figure 1), although the structural assignments at C19 and C20 were not error proof. Specifically, while the NOE interactions and coupling constants exhibited by palmerolide A may exclude the two anti C19/C20 diastereomers, both syn structures could be possible. Furthermore, while Mosher ester studies suggested the absolute stereochemistry at the C7, C10, and C11 positions, the low optical rotation of the natural product^[1] did not bode well for its diagnostic value as a means to confirm its absolute stereochemistry. Most recently, these suspicions were confirmed by an elegant study by De Brabander and co-workers (which culminated in the total synthesis of the unnatural enantiomer of palmerolide A), [3] with the structural revision of not only the relative stereochemistry between the C7-C11 and C19-C20 domains, but also of the absolute configuration of the molecule. Herein, we report our own efforts in this area that culminated in total syntheses of, among several isomers, the originally proposed structure 1a and the revised structure 1b (Figure 1) of palmerolide A by a modular and flexible strategy that allows access to variants of the palmerolide A molecule as depicted retrosynthetically in Scheme 1.

It was envisioned that a Stille coupling reaction, a Yamaguchi esterification, a ring-closing metathesis, and an enamide coupling reaction would serve to assemble and

Scheme 1. Retrosynthetic analysis of the originally proposed palmerolide A structure (1 a). MOM = methoxymethyl, TBS = tert-butyldimethylsilyl.

elaborate the three key building blocks 2-4 shown in Scheme 1 into the final structure 1a. The adopted routes to these intermediates were designed with maximum flexibility to deliver all possible stereoisomers and other variants of the palmerolide molecule for structural and biological studies.

Scheme 2 summarizes the construction of the vinyl iodide fragment 2 that began with imide 5 (prepared in 92 % yield by reaction of (S)-(-)-4-benzyl-2-oxazolidinone with propionic acid chloride in the presence of nBuLi). Thus, treatment of 5 with nBu₂BOTf/Et₃N^[4] followed by reaction of the resulting boron enolate with vinyl iodide aldehyde 7 (prepared in 2 steps and 81 % overall yield from 3-butyn-1-ol by standard methods), [5] and silvlation (TBSOTf/iPr2NEt) of the soobtained hydroxy intermediate furnished the TBS ether 6 in 40% overall yield and greater than 95% de. Reductive removal of the oxazolidinone chiral auxiliary (NaBH₄, 66% vield), followed by oxidation (DMP) and Wittig homologation (PPh₃ = C(Me)CO₂Et, 56% yield for the 2 steps) led to the ethyl ester 8, whose conversion into the targeted iodide 2 was readily accomplished in 3 steps: 1) DIBAlH, 80% yield, 2) TBAF, 85% yield, and 3) TBSCl/Et₃N/DMAP, 92% yield. Alternatively, starting from dienolate 5a (prepared by coupling (R)-(+)-4-benzyl-2-oxazolidinone with (E)-2methyl-2-pentenoic acid in the presence of PivCl/Et₃N/LiCl in 91% yield, followed by dienolate formation under the influence of sodium hexamethyldisilazane, and trapping with TBSCl in 94% yield), vinylogous Mukaiyama aldol reaction with the vinyl iodide aldehyde 7 under the conditions described by Kobayashi and co-workers^[6] (TiCl₄, 83 % yield, > 95 % de) furnished the expected hydroxy compound.^[7] The chiral auxiliary was then reductively removed (NaBH₄, 84% yield) to afford, after selective silylation (TBSCl/Et₃N/ DMAP, 92% yield), the intermediate 19-epi-2. The latter compound was then converted into 2 by oxidation/reduction (DMP, 90 % yield; LiAlH(OtBu)₃/LiI, 92 % yield ca. 3:1 syn/ anti mixture) followed by desilylation/chromatographic separation (TBAF, 85% yield, silica gel) and selective silvlation

Scheme 2. Construction of C16-C23 vinyl iodide fragments 2 and 19epi-2. Reagents and conditions: a) 7 (2.5 equiv), nBu₂BOTf (1.0 м in CH₂Cl₂, 1.2 equiv), Et₃N (1.0 equiv), CH₂Cl₂, -78 °C, 12 h, 46% (>95 % de); b) TBSOTf (1.2 equiv), iPr2NEt (1.5 equiv), CH2Cl2, 0°C, 30 min, 86%; c) NaBH₄ (5.0 equiv), THF/H₂O (5:1), $0\rightarrow 23$ °C, 3 h, 66%; d) DMP (1.2 equiv), NaHCO₃ (5.0 equiv), CH₂Cl₂, 23 °C, 30 min; e) PPh₃=C(Me)CO₂Et (2.5 equiv), CH₂Cl₂, 23 °C, 12 h, 56% for the 2 steps; f) DIBAIH (1.0 m in toluene, 2.5 equiv), CH₂Cl₂, -78 °C, 30 min, 80%; g) TBAF (1.0 m in THF, 1.5 equiv), THF, reflux, 2 h, 85%; h) TBSCl (1.2 equiv), Et₃N (1.5 equiv), DMAP (0.2 equiv), CH_2Cl_2 , $0 \rightarrow$ 23 °C, 2 h, 92 %; i) 7 (2.0 equiv), TiCl₄ (1.0 equiv), CH₂Cl₂, -78 °C, 19 h, $83\,\%$ (> $95\,\%$ de); j) NaBH4 (4.0 equiv), THF/H2O (20:1), 23 °C, 12 h, 84%; k) TBSCI (1.2 equiv), Et₃N (1.5 equiv), DMAP (0.2 equiv), CH₂Cl₂, $0\rightarrow 23$ °C, 2 h, 92%; l) DMP (1.2 equiv), NaHCO₃ (5.0 equiv), CH₂Cl₂, 23°C, 20 min, 90%; m) LiAlH(OtBu)₃ (1.0 м in THF, 3.0 equiv), LiI (5.0 equiv), Et₂O, -78 °C, 1 h, 92% (ca. 3:1 mixture of syn/anti diastereomers); n) TBAF (1.0 m in THF, 1.2 equiv), THF, 23 °C, 1 h. 85%; o) TBSCI (1.2 equiv), Et₃N (1.5 equiv), DMAP (0.2 equiv), CH_2Cl_2 , $0\rightarrow 23$ °C, 2 h, 92%. Bn = benzyl, DIBAlH = diisobutylaluminum hydride, DMAP = 4-dimethylaminopyridine, DMP = Dess-Martin periodinane, TBAF = tetra-n-butylammonium fluoride, Tf = trifluoromethanesulfonyl.

(TBSCl/Et₃N/DMAP, 92 % yield). The isomeric vinyl iodides ent-2 and 20-epi-2 were similarly prepared from ent-5 and ent-5a.

Scheme 3 depicts the construction of the stannane fragment 3. Reaction of aldehyde 9 (prepared in 2 steps from 4pentyn-1-ol by standard methods)^[8] with $[(Z)-\gamma-(methoxy$ methoxy)allyl]-(-)-diisopinocampheylborane (10, freshly prepared from methoxymethyl allyl ether, sBuLi, (-)-Ipc₂BOMe and BF₃·Et₂O)^[9] in THF at −78°C afforded, upon desilylation (K₂CO₃/MeOH), the hydroxy acetylene 11 in good overall yield (74% for the 2 steps) and excellent stereoselectivity (>95% de (NMR) and >90% ee (Mosher ester)). Finally, installation of the carbamate group (Cl₃CC(O)NCO/K₂CO₃/MeOH, quant.), [10] followed by manipulation of the acetylenic moiety 1) AgNO₃/NBS;

6001

Zuschriften

Scheme 3. Synthesis of C9–C15 vinyl stannane fragment **3.** Reagents and conditions: a) **10** (1.0 equiv), THF, $-78 \rightarrow 23$ °C, 12 h; b) K₂CO₃ (5.0 equiv), MeOH, 23 °C, 5 h, 74% for the 2 steps from **10**; c) trichloroacetyl isocyanate (3.0 equiv), CH₂Cl₂, 23 °C, 1 h; then K₂CO₃ (3.0 equiv), MeOH, 23 °C, 1 h, quant.; d) NBS (1.1 equiv), AgNO₃ (0.05 equiv), acetone, 23 °C, 30 min, 81%; e) [Pd(dba)₂] (0.2 equiv), PPh₃ (0.8 equiv), nBu_3 SnH (2.2 equiv), THF, 23 °C, 30 min, 77% (>95:5 E/Z stereoselectivity). Ipc = isopinocampheyl; NBS = N-bromosuccinimide; dba = dibenzylideneacetone.

2) cat. $[Pd(dba)_2]/nBu_3SnH$, 62% overall yield)^[11] gave the desired vinyl stannane **3**. A similar sequence from **9** employing (+)-Ipc₂BOMe led sequentially to *ent*-**11** and *ent*-**3**.

The third required fragment **4** was prepared through a Jacobsen resolution^[12] as outlined in Scheme 4. Thus, mCPBA-mediated epoxidation of the TBS-protected 5-hexene-1-ol (**13**), followed by exposure to (R,R)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamineco-

TBSO

a)
$$mCPBA$$

TBSO

b) (R, R) -Jacobsen

Co^{II} cat., AcOH, H₂O

14

c) $Me_3S^+\Gamma$
 $nBuLi$

RO₂C

f) DMP

g) Ph_3PCHCO_2Me

OMOM

15: $R^1 = H$, $R^2 = TBS$

e) $TBAF$

16: $R^1 = MOM$, $R^2 = TBS$

e) $TBAF$

17: $R^1 = MOM$, $R^2 = H$

Scheme 4. Construction of C1–C8 carboxylic acid fragment 4. Reagents and conditions: a) mCPBA (1.3 equiv), CH_2CI_2 , $0 \rightarrow 23$ °C, 3 h, 90%; b) (R,R)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine-cobalt(II) (5 mol%), AcOH (0.01 equiv), H_2O (0.5 equiv), CH_2CI_2 , $0 \rightarrow 23$ °C, 24 h, 47% (> 99% ee); c) CM_2S^{+1} (4.0 equiv), CM_2CI_2 , CM_2S^{+1} (4.0 equiv), CM_2S^{+1} (4.0 equiv), CM_2S^{+1} (4.0 equiv), CM_2S^{+1} (4.0 equiv), CM_2S^{+1} (1.0 m in CM_2S^{+1}) CM_2S^{+1} (2.0 equiv), CM_2S^{+1}) CM_2S^{+1} (1.0 m in CM_2S^{+1}) CM_2S^{+1} (2.0 equiv), CM_2S^{+1}) CM_2S^{+1} (1.5 equiv), $CM_2S^{$

balt(II) catalyst (5 mol%), AcOH (0.01 equiv) and H₂O (0.5 equiv) in CH₂Cl₂, led smoothly to enantiomerically enriched (> 99% *ee*, Mosher ester analysis) epoxide **14** in 47% yield (maximum 50%). Epoxide opening with the sulfur ylide derived from Me₃S⁺I⁻ and *n*BuLi^[13] led to allylic alcohol **15** (90% yield), whose conversion into carboxylic acid **4** involved MOM protection (**16**, 85% yield), desilylation (**17**, 95% yield), oxidation (DMP, 95% yield), Wittig reaction with Ph₃P=CHCO₂Me (**18**, 90% yield), and saponification (aq KOH, 85% yield). Employing the same starting material **13**, the identical sequence, and the corresponding (*S*,*S*)-Jacobsen Co^{II} catalyst allowed the construction of *ent-***4** via *ent-***14**.

With all three key building blocks **2–4** in hand, we then turned our attention to their assembly and elaboration to our original target **1a**. In considering the sequence of reactions to construct the macrocycle, we opted for the one shown in Scheme 5 in which the ring-closing metathesis^[14] was reserved as the last step, while the Stille coupling^[15] reaction was chosen to begin the process, thus leaving the Yamaguchi esterification^[16] as the middle reaction. Thus, reaction of the vinyl iodide **2** with stannane **3** in the presence of catalytic

Scheme 5. Coupling of fragments **2**, **3**, and **4**, and completion of the total synthesis of the originally proposed structure **1a**. Reagents and conditions: a) [Pd(dba)₂] (0.25 equiv), AsPh₃ (3.0 equiv), LiCl (3.0 equiv), NMP, 23 °C, 12 h, 67%; b) 2,4,6-trichlorobenzoyl chloride (1.1 equiv), Et₃N (1.5 equiv), **4** (1.1 equiv), DMAP (1.1 equiv), toluene, 23 °C, 12 h, 61%; c) TBAF (1.0 m in THF, 1.5 equiv), THF, 23 °C, 2 h; d) DMP (1.2 equiv), NaHCO₃ (5.0 equiv), CH₂Cl₂, 23 °C, 30 min, 79% for the 2 steps; e) CrCl₂ (10.0 equiv), CHl₃ (6.0 equiv), THF/dioxane (1:6), 23 °C, 2 h, 80% (>95:5 E/Z); f) BF₃·Et₂O (6.0 equiv), Me₂S, 23 °C, 30 min, 46% (+10% of mono-MOM intermediates; g) Grubbs II cat. (0.2 equiv), CH₂Cl₂, 23 °C, 1 h, 76%; h) **26** (2.0 equiv), Cul (1.0 equiv), DMF, 23 °C, 7 h, 44% based on 36% recovered starting material (+10% of decarbamated **1a**). NMP = N-methylpyrrolidone; DMF = N, N'-dimethylformamide.

[Pd(dba)₂], AsPh₃, and LiCl provided tetraene 19 in 67% yield. Incorporation of carboxylic acid 4 into the growing molecule was then facilitated by 2,4,6-trichlorobenzoyl chloride in the presence of Et₃N and DMAP, to furnish ester 20 (61% yield). Conversion of 20 into vinyl iodide 23 was achieved in three steps: 1) TBAF-induced desilylation to 21, 2) oxidation with DMP to 22 (79% for the two steps), and 3) olefination with CrCl₂/CHI₃^[17] to give **23** in 80% yield. Removal of the two MOM groups from 23 (BF3·Et2O/ Me₂S)^[18] led to the desired precursor 24 (46% yield with 10% of recovered mono-MOM intermediates, which were recycled), thus setting the stage for the much-anticipated ringclosing metathesis. Gratifyingly, exposure of bisallylic compound 24 to Grubbs II catalyst in CH₂Cl₂ solution at ambient temperature led to the smooth and exclusive formation of the macrocycle 25 (76% yield) with trans geometry at the newly formed double bond as confirmed by NMR spectroscopy $(^{H-H}J_{8,9}=15.5 \text{ Hz})$. Finally, installation of the enamide moiety to afford structure 1a was achieved through application of the Buchwald copper-catalyzed protocol (26, CuI/Cs₂CO₃/N,N'dimethylethylenediamine)[19] in 44% yield based on 36% recovered starting material and 10% decarbamated 1a.

Although similar, the ¹H NMR spectroscopic data of synthetic **1a** did not match those reported^[1] for the natural palmerolide A, with notable differences for H7 and H10. At this stage we became convinced that the true structure of palmerolide A must be 19-epi-20-epi-1a (ent-1b) which became our next target. After reaching ent-1b (from ent-2, 3, and 4, and following the developed synthetic technology), whose ¹H NMR data corresponded to those reported for the natural substance, we learned^[3] of the revised structure of palmerolide A (1b), which immediately became our next priority to synthesize. The total synthesis of 1b was accomplished from fragments 2, ent-3, and ent-4 following the same strategy as that described for the synthesis of **1a** (and *ent-***1b**) as delineated in Scheme 5. The final stages and advanced intermediates of the total synthesis of 1b are shown in Scheme 6. Synthetic 1b exhibited identical physical properties (1H and 13C NMR spectra, and MS) to those reported[1] for natural palmerolide A. In particular, the identical circular dichroism (CD) spectrum and sign of optical rotation of synthetic 1b to those reported for natural palmerolide A

a) Grubbs II cat.[14] b) as in step h) 25b in Scheme 5

Scheme 6. Final stages of the total synthesis of the revised structure 1 b. Reagents and conditions: a) Grubbs II cat. (0.2 equiv), CH₂Cl₂, 23 °C, 1 h, 72%; b) 26 (2.0 equiv), CuI (1.0 equiv), Cs₂CO₃ (1.0 equiv), N,N'-dimethylethylenediamine (2.0 equiv), DMF, 23 °C, 7 h, 50% based on 38% recovered starting material (+10% of decarbamated 1b).

unambiguously validated its absolute configuration and, thus, of the natural product.[3] The CD spectra of both synthetic palmerolide A enantiomers 1b and ent-1b shown in Figure 2, corresponded with those published for the natural product and its enantiomer.[3]

Figure 2. CD spectra of ent-1b (top, CHCl₃, 25 °C, 0.0013 M) and of 1b (bottom, CHCl₃, 25 °C, 0.0025 м).

The described chemistry once again demonstrates the power of the olefin metathesis reaction in complex molecule construction, [14b,c] and delivered the originally proposed[1] structure 1a, the revised structure 1b,[3] and its enantiomer ent-1b of palmerolide A.[20] Furthermore, the flexibility of the strategy to deliver either configuration at each stereocenter allows construction of all stereoisomers of this valuable substance for biological studies.

Received: May 21, 2007 Published online: June 28, 2007

Keywords: antitumor agents · macrolides · metathesis · natural products · total synthesis

- [1] T. Diyabalanage, C. D. Amsler, J. B. McClintock, B. J. Baker, J. Am. Chem. Soc. 2006, 128, 5630-5631.
- X.-S. Xie, D. Padron, X. Liao, J. Wang, M. G. Roth, J. K. De Brabander, J. Biol. Chem. 2004, 279, 19755-19763.
- X. Jiang, B. Liu, S. Lebreton, J. K. De Brabander, J. Am. Chem. Soc. 2007, 129, 6386-6387.
- [4] a) D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis, D. J. Mathre, J. Bartroli, Pure Appl. Chem. 1981, 53, 1109 – 1127; b) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2121-2129.
- a) S. Ma, E. Negishi, J. Org. Chem. 1997, 62, 784-785; b) P. A. Roethle, D. Trauner, Org. Lett. 2006, 8, 345 – 347.
- S. Shirokawa, M. Kamiyama, T. Nakamura, M. Okada, A. Nakazaki, S. Hosokawa, S. Kobayashi, J. Am. Chem. Soc. **2004**, *126*, 13604 – 13605.
- [7] A similar sequence was employed in Ref. [3].
- [8] H. Makabe, M. Higuchi, H. Konno, M. Murai, H. Miyoshi, Tetrahedron Lett. 2005, 46, 4671-4675.

6003

Zuschriften

- [9] H. C. Brown, P. K. Jadhav, K. S. Bhat, J. Am. Chem. Soc. 1988, 110, 1535-1538.
- [10] P. Kocovský, Tetrahedron Lett. 1986, 27, 5521 5524.
- [11] C. D. J. Boden, G. Pattenden, T. Ye, J. Chem. Soc. Perkin Trans. 1 1996, 2417 – 2419.
- [12] a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307–1315; b) for a previous preparation of ent-14 using an identical procedure, see A. Myers, B. A. Lanman, J. Am. Chem. Soc. 2002, 124, 12969–12971.
- [13] L. Alcaraz, J. J. Harnett, C. Mioskowski, J. P. Martel, T. Le Gall, D.-S. Shin, J. R. Falck, *Tetrahedron Lett.* **1994**, *35*, 5449 – 5452.
- [14] a) R. H. Grubbs, Tetrahedron 2004, 60, 7117-7140; b) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4564-4601; Angew. Chem. Int. Ed. 2005, 44, 4490-4527; c) A.

- Gradillas, J. Perez-Castells, *Angew. Chem.* **2006**, *118*, 6232 6247; *Angew. Chem. Int. Ed.* **2006**, *45*, 6086 6101.
- [15] L. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133-173.
- [16] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989 – 1993.
- [17] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408-7410.
- [18] R. Beumer, P. Bayon, P. Bugada, S. Ducki, N. Mongelli, F. R. Sirtori, J. Telser, C. Gennari, *Tetrahedron* 2003, 59, 8803–8820.
- [19] L. Jiang, G. E. Job, A. Klapars, S. L. Buchwald, Org. Lett. 2003, 5, 3667–3669.
- [20] The isomers of palmerolide A, 19-epi-1a and 20-epi-1a, were also synthesized by employing the appropriate building blocks. Full details will be reported in due course.